My research interests in Cognitive Neuroscience revolve around a number of topics including, among others, consciousness, sensory and multisensory processing, attention, learning and memory processes and action control. Within these topics, I am currently investigating the functional role of brain oscillations, the functional connectivity between remote but interconnected brain areas as well as their plasticity. To this aim, I use careful psychophysics, electroencephalography (EEG), noninvasive neurostimulation methods (such as TMS and tACS) and their online combination in healthy, aging, subclinical (e.g. schizotypy) and clinical populations (e.g. migraine).
The functional role of brain oscillations and the plastic properties of functional connections underlying conscious experience.
We continuously integrate/segregate information within and across the senses leading to a coherent conscious experience of the external world. Despite this undoubtable subjective coherent experience of continuity, there is increasing evidence that subtending neural processes might represent discrete rather than continuous temporal moments. A taster of such apparent contradiction can be provided, for example, by the subjective experience of crossmodal illusions, an elective viewpoint to test spatio-temporal boundaries of human perceptual sampling leading to conscious experience. By using noninvasive neurostimulation techniques (TMS and tACS) in combination with electroencephalography (EEG) and careful psychophysics in the healthy, aging and subclinical populations, I test neural mechanisms of conscious processing ranging from binding phenomena to time perception.
These lines of investigation assess both local neural processes and complex neural networks through the use of novel, state-of-the-art neurostimulation protocols in a multimethod environment. Particular attention is devoted to inter-individual differences in the coordination of bottom-up and top-down factors leading to individual conscious processes.